Training course: Pharmacotherapy in Older People

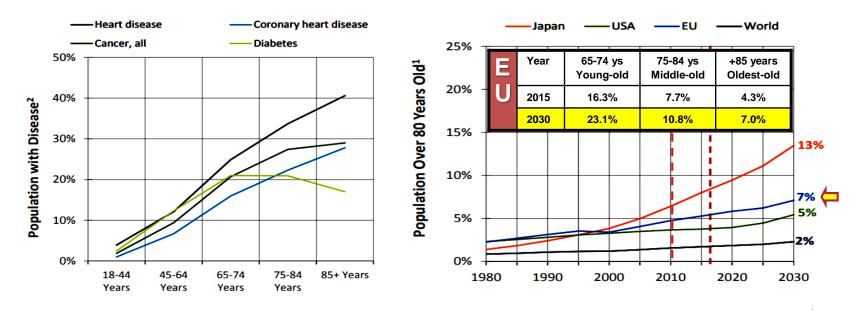
Drug metabolism in older people

Juan Tamargo, MD, PhD, FESC

Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Madrid

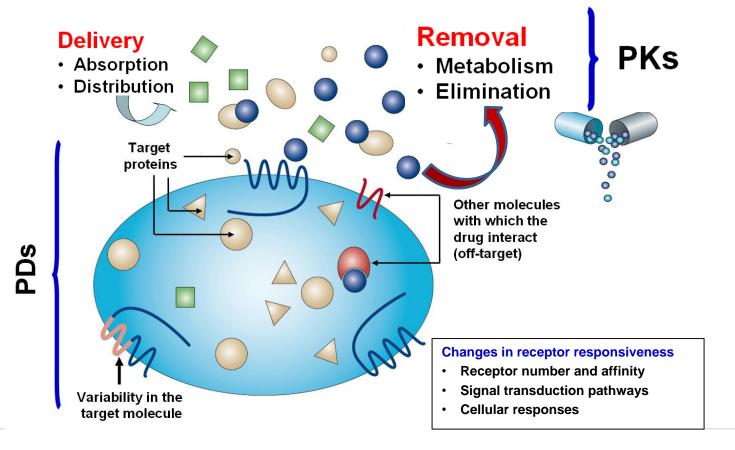
Declaration of Conflict Of Interest

The existence of potential conflicts of interest does not necessarily indicate a bias. However it is our ethical obligation to inform organisers and participants so that they are made aware of any relationship that might cause unintentional bias. A potential conflict of interest may arise from various relationships, past or present, such as employment, consultancy, investments and stock ownerships, funding for research, family relationship etc.


XX I have no potential conflict of interest to report

☐ I have the following potential conflict(s) of interest to report

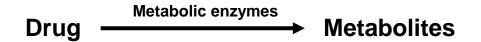
Type of affiliation / financial interest	Name of commercial company
Receipt of grants/research supports:	
Receipt of honoraria or consultation fees:	
Participation in a company sponsored speaker's bureau:	
Stock shareholder:	
Spouse/partner:	
Other support (please specify):	



Aging populations worldwide are leading to more chronic diseases and greater demand of care

- Today, someone 65 years of age can anticipate living another 18-20 years
- Increasing life expectancy has resulted in a progressive increase in elderly adults with chronic diseases and comorbidities (pluripathology) leading to an increased number of medications (polypharmacy)
- Individuals aged >80 years are the fastest growing group

PK/PD determinants of drug action in the elderly


Agenda

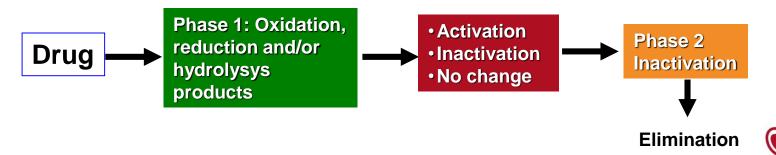
- The concept of drug metabolism (biotransformation)
- Phases I and II of drug metabolism
 - Enzymes and sites of metabolism
- Enzyme induction and inhibition
- Factors affecting drug metabolism
 - Role of genetics in drug metabolism

Drug metabolism

- Many drugs are lipophilic compounds and do not pass ready into the aqueous environment of the urine
- They must first undergo a variety of enzymatic changes (i.e., biotransformed) in different tissues leading to metabolites that are readely eliminated in urine or bile
- Also applicable to endogenous compounds (steroid hormones, cholesterol, fatty acids)
- We need to understand these changes because they explain:
 - Changes in drug efficacy and safety
 - Drug interactions derived from the induction/inhibition of metabolic enzymes

Hepatic function/metabolism progressively declines with advancing age

Paramater	Change	Consequence
Metabolism	 ↓ liver size and mass (20-30%) ↓ hepatic blood flow (20-40%) ↓ liver´s capacity (≥30%) for phase I metabolism (CYPs) 	 ↓ bioavailability of predrugs (ACEIs) ↓ drug metabolism ↑ exposure and t_{1/2} of highly metabolized drugs

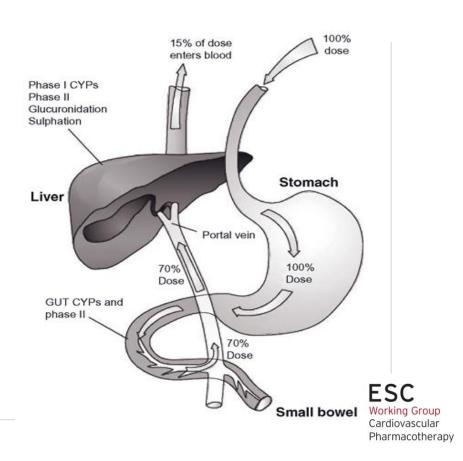

	· · · · · · · · · · · · · · · · · · ·
Analgesics	NSAIDs: ibuprofen, naproxen, paracetamolMeperidine
Cardiovascular	 Antiarrhythmics: amiodarone, lidocaine, propafenone, quinidine β-blockers: labetalol, metoprolol, propranolol CCBs Theophylline Warfarin

Psychoactive	Benzodiazepines: alprazolam, chlordiazepoxide, diazepam, flurazepam, triazolam Bharutair
	Phenytoin
	• TCAs: Amitriptyline*,
	desipramine, imipramine,
	nortryptiline
	Trazodone
Other	Diphenhydramine
	• Levodopa
	Tolbutamide

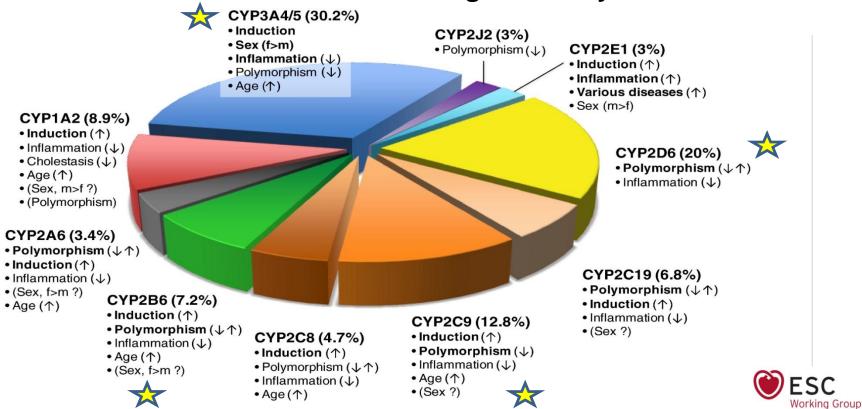
Drug metabolism (1)

Phase I reactions: oxidation, reduction and hydrolysys

- Cytochromes P450: a family of enzymes containing hemeiron as a cofactor that function as monooxygenases
- Lipophilic drugs are converted to water-soluble metabolites of lesser, equal, or greater effect
- Location: hepatocyte (smooth endoplasmic reticulum) and intestinal mucosa
 - Other organs: lungs, kidneys they are substrate specific
- Phase I reactions DECLINE in the elderly


Cardiovascular Pharmacotherapy

First-pass metabolism


- Following the oral administration of a drug, a percentage of the dose can be metabolized either the gut or the liver before it reaches the systemic circulation
- ↓ oral availability and activity of:
- Dabigatran, L-dopa, lidocaine, nitroglycerin, opioids, propranolol, simvastatin, theophylline, verapamil
- Some only I.V.
- Elderly:

 the first-pass effect and

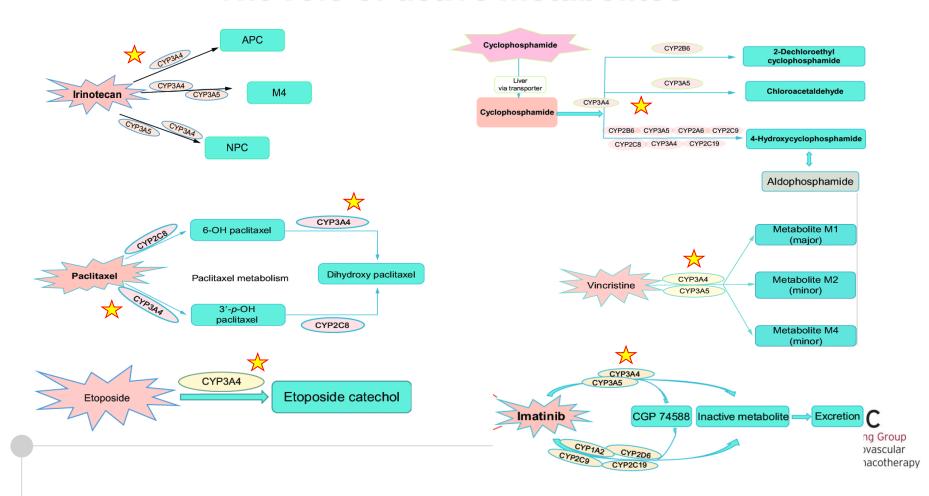
 the oral bioavailability and Pc of some of these drugs
- ↓ the bioavailability of prodrugs (ACEIs)

Fraction of clinically used drugs metabolized by P450 isoforms and factors influencing variability

Cardiovascular Pharmacotherapy

Phase II (conjugation) reactions

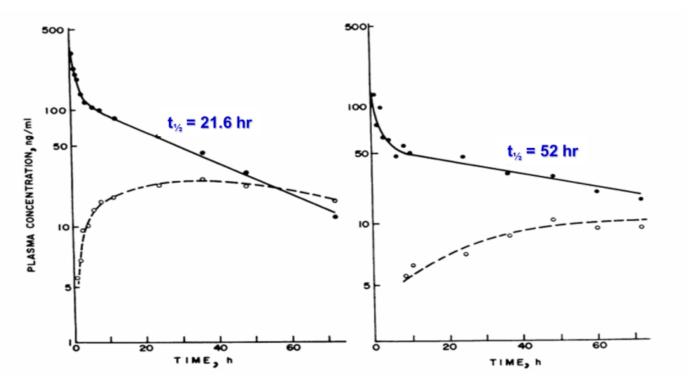
- Attach small, polar and water-soluble endogenous compounds to the drug or its phase I metabolites to form hydrophilic inactive metabolites
 - Easily excreted in urine and/or bile
- Glucuronidation, glutathione conjugation, N-acetylation, methylation, sulfation
- Non-microsomal enzymes located in the cytoplasm, hepatpcyte mitochondria, plasma
- Phase II metabolism generally preserved in the elderly



Consequences of drug biotransformation

- Active drug → inactive metabolites: the most common fate for most drugs
- Active drug → active metabolites:
 - Diazepam → Oxazepam
 - Imipramine → Desipramine, Amitryptiline → Nortriptyline
 - Chemotherapy drugs
- Inactive drug (prodrug) → biologically active metabolites:
 - Prodrugs → hydrolysis of ester or amide bond
 - Some ACEIs, dabigatran, clopidogrel
 - Many chemotherapy drugs
 - L-dopa → Dopamine
- A metabolite with a new action:
 - Procainamide (Class IA) → NAPA (class III)
- Toxic metabolites:
 - Acetaminophen metabolites liver failure; lidocaine/meperidine metabolites seizures

The role of active metabolites



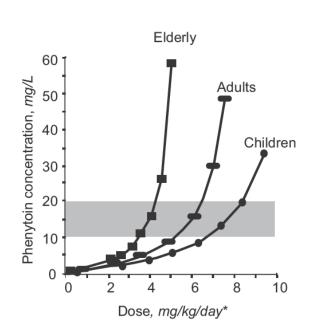
Hepatic clearance decreases with age

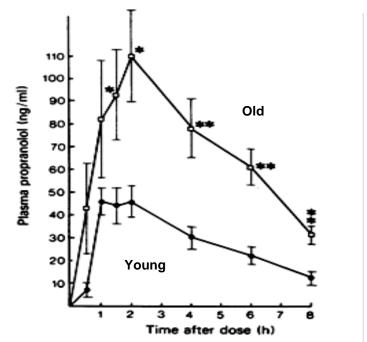
- It quantifies the loss of drug during its passage through the liver. It is a function of:
 - Hepatic blood flow
 - Plasma protein binding (e.g. hypoalbuminemia, displacement by other drugs)
 - Activity of liver enzymes and transporters (e.g. liver failure, specific inhibition or induction by drugs, genetic polymorphisms)
- Other factors: Nutritional state, comorbidities, other drugs
 - Hepatic diseases (cirrhosis, alcohol liver disease, jaundice, carcinoma) are more common in elderly
 - ↓ liver's ability to recover from injury
- Drugs with high intrinsic clearance are rapidly metabolized and rate of drug loss is determined by the hepatic blood flow
 - Diltiazem, lidocaine, imipramine, metoprolol, nifedipine, propranolol, verapamil
 - Congestive HF, shock, hepatic diseases: reduce the dose up to 40%
- Drugs with low intrinsic clearance are slowly metabolized and the rate of elimination is mainly dependent on the enzyme activity in the liver
 - Carbamazepine, diazepam, phenytoin, theophylline, and warfarin

The effects of age and liver disease on the disposition and elimination of diazepam and desmethyldiazepam in adult man

Patients with cirrhosis: $t\frac{1}{2}$ 105.6±15.2 vs. 46.6 ± 14.2 h, P<0.001. With acute viral hepatitis 74.5±27.5 h, with chronic active hepatitis of 59.7+23.0 h vs 32.7±8.9 h (P < 0.01)

There is an increase in diazepam half-life with increasing age




PD/PK values for verapamil in hypertensive patients

	Young	Elderly	Very elderly
Change in mean SBP (mmHg)	-7.3 ± 4.2	-13.5 ± 5.9*	-15.9 ± 9.6*
Change in HR (bpm)	+8.0 ± 5.0	-1.0 ± 10.0	-6.0 ± 8.0*
Bioavailability (%)	34 ± 11	29 ± 16	
AUC (ng/mL x h ⁻¹)	142 ± 3	180 ± 52	372 ± 177*
t½ (h)	4.8 ± 1.5	5.8 ± 1.9	10.7 ± 1.8*
Total clearance (mL/min x kg)	15.5 ± 4.5	10.5 ± 3.4	8.0 ± 4.1*

Effect of age on plasma concentrations of phenytoin and propranolol

Genetic variation

- 1. Genetic diversity is the rule rather than the exception with drug metabolizing enzymes
 - There is a wide inter-individual variability in drug response (efficacy/safety)
- 2. Due to the presence of genetic polymorphisms and differences in gene regulation/expression
- Allelic variants with different catalytic activities from the WT form:
 - Lack of (PMs), intermediate (IMs) or anhanced catalytic ability (ultrarapid-UM, extensive-EM)
 - PM phenotype higher risk of serious AEs due to drug accumulation in the body
 - Metabolic inhibiton can convert a normal metabolizer into a poor metabolizer
- Frequency of the polymorphisms varies with the ethnic ancestry

"If it were not for the great variability among individuals medicine might as well be a science and not an art". Sir William Osler, 1892

Drug-Metabolizing Enzyme	Frequency of Variant Poor- Metabolism Phenotype	Representative Drugs Metabolized	Effect of Polymorphism	
Cytochrome P-450 2D6 (CYP2 D6)	7% in Caucasians 1% in China ¹⁷	Fluoxetina Haloperidol Paroxetine Codeine	Enhanced drug effect Enhanced drug effect Enhanced drug effect Decreased drug effect	
Cytochrome P-450 2C9 (CYP2C9)	Approximately 3% in England ²⁹ (those homozygous for the *2 and *3 alleles)	Warfarin ^{29,30} Phenytoin ^{31,32}	Enhanced drug effect ²⁹⁻³²	
Cytochrome P-450 2C19 (CYP2C19)			Enhanced drug effect ^{36,35}	
N-Acetyltransferase 2	52% among white Americans 10 17% of Japanese 58	Isoniazid ¹⁰ Hydralazine ¹¹ Procainamide ¹²	Enhanced drug effect13	
Uridine diphosphate–glucurono syltransferase 1A1 (TATA-bo polymorphism)		Irinotecan ⁶¹ Bilirubin ⁶²	Enhanced drug effect ⁶³ Gilbert's syndrome ⁶²	
Thiopurine S-methyltransferase Approximately 1 in 300 whites 50,57 Approximately 1 in 2500 Asians 57		Mercaptopurine ⁵¹ Azathioprine	Enhanced drug effect (toxicity)51-53	
Catechol O-methyltransferase Approximately 25% of whites 51,64		Levodopa ^{51,65} Enhanced drug effect ⁵³		

Consequences of Induction/inhibition

- Enzyme induction: ↑ the rate of hepatic metabolism
 - † the first-pass effect and reduces oral bioavailability
 - ↓ the Pc, intensity/duration of drug effect
 - ↑ the effect of active metabolties
 - Dosing rates may need to be increased to maintain effective Pc
- Enzyme inhibition: ↓ the rate of hepatic metabolism
 - ↑ Pc of the parent drug and increases/prolongs drug effects
 - † the risk of drug-induced toxicity
 - ↓ metabolite(s) levels: less effect if active metabolites (clopidogrel)

Pc: plasma concentrations

CYP3A4 modulation

CYP3A4 SUBSTRATES

- Amiodarone, dronedarone
- Most benzodiazepines
- Calcium channel blockers
- Ciclosporin, sirolimus, tacrolimus
- Ivabradine
- Lidocaine
- Macrolides: clarithromycin, erythromycin, telithromycin
- Methadone
- NOACs: apixaban, edoxaban, rivaroxaban
- SSRIs: citalopram
- Statins: atorvastatin, lovastatin, simvastatin
- Ticagrelor
- VIH protease inhibitors: indinavir, nelfinavir, ritonavir, saquinavir
- Warfarin

CYP3A4 INHIBITORS

- 1. Weak: cimetidine
- 2. Moderate:
- Amiodarone
- Ciprofloxacin
- Fluconazole, miconazole
- Diltiazem, verapamil
- Delarvidine
- Grapefruit juice
- VIH protease inhibitors: amprenavir, fosamprenavir
- 3. Strong:
- Macrolides: clarithromycin, telithromycin, troleandomicin
- Azoles: itraconazole, ketoconazole
- Nefazodone
- VIH protease inhibitors**: atazanavir, darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, tipranavir

CYP3A4 INDUCERS

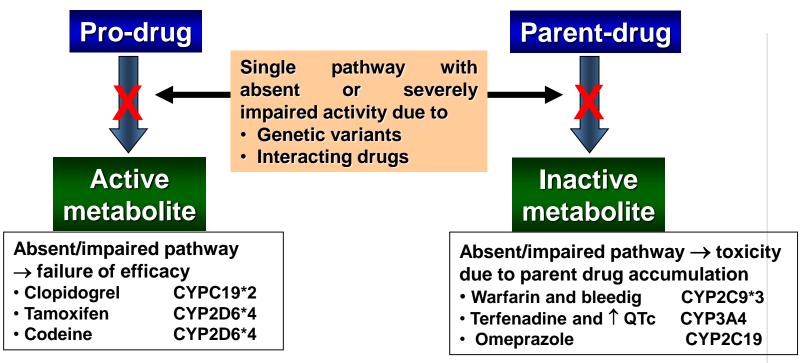
- 1. Berbiturales
- 2. Carbamazepine
- 3. Dexamethasone
- 4. Phenytoin
- 5. Primidone
- 6. Rifamycins
- 7. St John'swort**

CYP2D6 modulation

SUBSTRATES

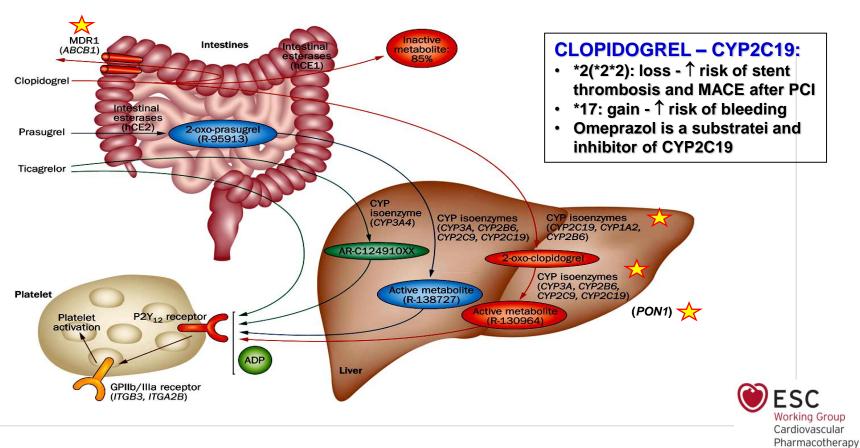
- Antiarrhythmics: Flecainide, Lidocaine, Mexiletine
- Antidepressants: SSRIs, Trazodone, Tricyclics, Venlafaxine
- Beta blockers
- Dextromethorphan
- Haloperidol
- Omeprazole
- Phenothiazines
- Opioids: codeine****, morphine, tramadol
- Risperidone
- Tamoxifen***
- Testosterone

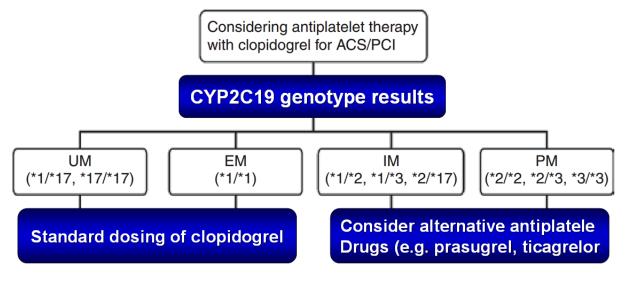
INHIBITORS


- Amiodarone
- Bupropion
- Celecoxib
- Cimetidine
- Metoclopramide
- Methadone
- Paroxetine
- Quinidine
- Ritonavir
- SSRIs***: fluoxetine, fluvoxamine, sertraline

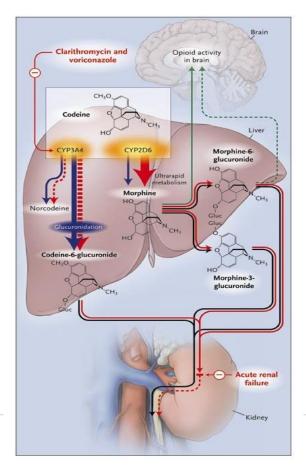
INDUCERS

- Carbamazepine
- Dexamethasone
- Phenobarbital
- Phenytoin
- Rifampin


Clinical consequence of metabolized phenotypes on drug response


- 1) UM good drug efficacy, rapid (and exaggerated) effects
- 2) UM poor drug efficacy, requires higher dosage. AEs in PMs

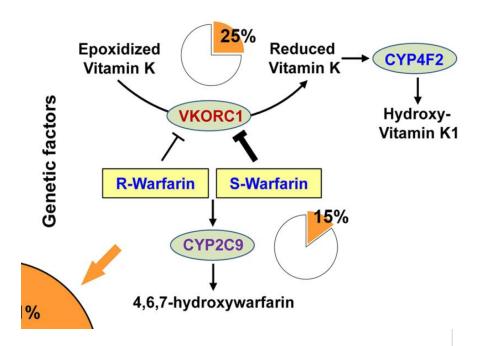
Metabolic pathway of P2Y₁₂-receptor inhibitors


Algorithm for suggested clinical actions based on CYP2C19 genotype when considering treatment with clopidogrel for ACS patients undergoing PCI

Genotype	Platelet inhih.	Residual platelet aggreg.	CV risks
UM (32.9%)	↑	\	↓ (↑ bleeding)
EM (38.5%)	Normal	Normal	Normal
IM (26.1%)	\	↑	<u> </u>
PM (1.7%)	+++	↑ ↑	$\uparrow\uparrow\uparrow$

If the parent drug needs to be metabolized to the active compound and metabolism is inhibited, then a therapeutic failure could result

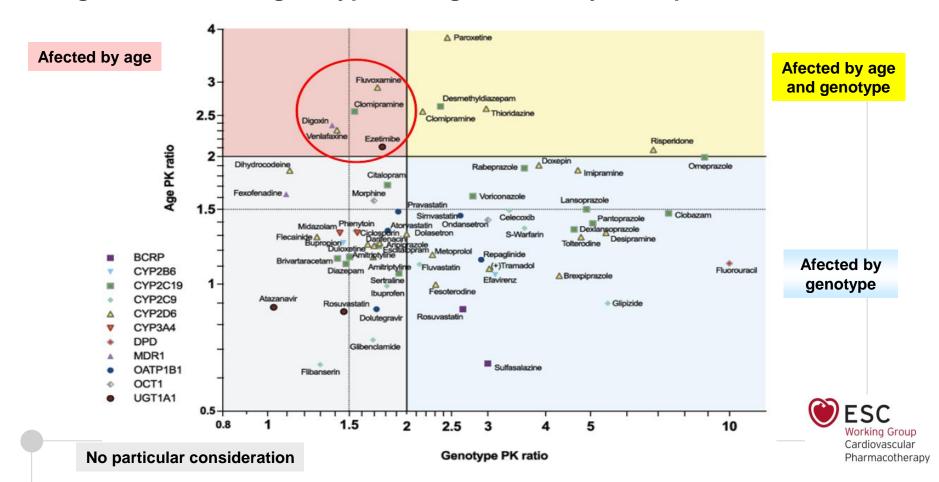
- 80% of codeine is converted via CYP3A4 to glucuronide, eliminated by kidney
- 5-10% is metabolized into morphine by CYP2D6
- Inhibition of CYP3A4 or rapid metabolic variants of CYP2D6 during renal failure would cause opioid intoxication
 - 7% of caucasians have a nonfunctional CYP2D6 variant
 - <2% are ultrarapid metabolizers



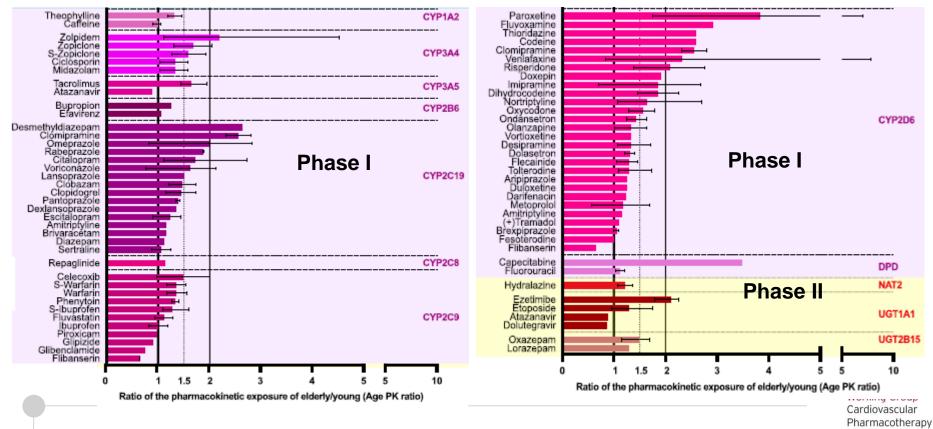
Enzyme inhibition

Increasing bleeding risk with warfarin in the elderly:

- Age explains 40% of dosing variation
- Variants in VKORC1 can explain 25%
- Variants in CYP2C9 can explain 15%
- Deficiency in vitamin K-dependent clotting factors (hepatic diseases), decreased hepatic clearance (↓ hepatic blood flow and warfarin plasma protein binding)


VKORC1: Vitamin K epOxide Reductase Complex subunit 1

	Mean Warfarin Daily Dose (mg)				ng)
Patient Age	<50	50-59	60-69	70–79	>80
Gurwitz, et al, 1992 (n=530 patients total study)	6.4	5.1	4.2	3.6	ND
James, et al, 1992 (n=2,305 patients total study)	6.1	5.3	4.3	3.9	3.5



Drugs in which both genotype and age ratios may be of particular concern

Age-related increase in the systemic exposure to drugs

A PK ratio of 1 indicates no difference between younger and older people having received the same drug dose

Take home messages

- 1. Aging is associated with pluripathology leading to polypharmacy
- 2. The PD/PK of CV drugs are modified due to age- and comobidities-related changes in organ function/body composition
 - Elderly people present a decrease in hepatic clearance
 - Differences in drug efficacy/safety
 - Monitor hepatic function and drug efficacy/safety
- 3. Genetic diversity is the rule rather than the exception with drug metabolizing enzymes
- 4. Evidence from RCTs in patients >75 years of age are sparse
- Guidelines do not mention the elderly population
- 5. We need to better understand the pharmacology in the elderly (BEERS, STOP/START)
- 6. Physicians, pharmacists, nurses..... must work together to improve drug therapy in the elderly

Pharmacotherapy